首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的发电机运行状态实时监视
引用本文:潘 远1,陈章国2,蔡新雷1,杨民京1. 基于卷积神经网络的发电机运行状态实时监视[J]. 中州煤炭, 2021, 0(6): 186-191,196. DOI: 10.19389/j.cnki.1003-0506.2021.06.032
作者姓名:潘 远1  陈章国2  蔡新雷1  杨民京1
作者单位:(1.广东电网有限责任公司电力调度控制中心,广东 广州 510600; 2.南京南瑞信息通信科技有限公司,江苏 南京 210003)
摘    要:为了实现对电力系统中所有发电机组暂态稳定性的监视,提出一种可在线识别发电机组实时运行状态的改进卷积神经网络框架。提出的框架使用向量测量单元所获取的测量值作为数据源,利用带有预测池化层的卷积神经网络来实现多标签分类功能,以达到识别多种发电机组运行状态的目的。在模拟多种故障状态的IEEE 118测试系统上开展仿真测试。结果表明,所提出的框架能够快速而准确地识别发电机组的运行状态,是实现发电机组运行状态在线监视的可行方法。

关 键 词:卷积神经网络  预测池化层  相量测量单元  深度学习  暂态稳定性

 Real time monitoring of generator operation state based on convolution neural network
Pan Yuan1,Chen Zhangguo2,Cai Xinlei1,Yang Minjing1.  Real time monitoring of generator operation state based on convolution neural network[J]. Zhongzhou Coal, 2021, 0(6): 186-191,196. DOI: 10.19389/j.cnki.1003-0506.2021.06.032
Authors:Pan Yuan1  Chen Zhangguo2  Cai Xinlei1  Yang Minjing1
Affiliation:(1.Power Dispatching Control Center of Guangdong Power Grid Co.,Ltd.,Guangzhou 510600,China;2.NARI Information & Communication Technology Co.,Ltd.,Nanjing 210003,China)
Abstract:In order to monitor the transient stability of all generating units in power system,an improved convolutional neural network framework is proposed which can identify the real time operation status of generating sets online.The proposed framework uses the measured values obtained by the phasor measurement unit as the data source,and uses the convolution neural network with prediction pooling layer to realize the multi label classification function,so as to achieve the purpose of identifying a variety of generator operating states.The simulation test is carried out on IEEE 118 test system simulating various fault states.The results show that the proposed framework can quickly and accurately identify the operating state of the generator set,which is a feasible method to realize the on-line monitoring of the operating state of the generator set.
Keywords:  convolutional neural network   predictive pooling layer   phasor measurement unit   deep learning   transient stability
点击此处可从《中州煤炭》浏览原始摘要信息
点击此处可从《中州煤炭》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号