首页 | 本学科首页   官方微博 | 高级检索  
     

短期电力负荷预测的时间序列数据深度挖掘模型设计
引用本文:董 亮1,阚新生2,邓国如1,徐 杰1,袁 慧1. 短期电力负荷预测的时间序列数据深度挖掘模型设计[J]. 中州煤炭, 2021, 0(6): 207-212. DOI: 10.19389/j.cnki.1003-0506.2021.06.036
作者姓名:董 亮1  阚新生2  邓国如1  徐 杰1  袁 慧1
作者单位:(1.国网湖北省电力有限公司信息通信公司,湖北 武汉 430077; 2.中国联合网络通信有限公司武汉市分公司,湖北 武汉 430000)
摘    要:短期电力负荷预测存在数据时间序列紊乱现象,导致预测短期电力负荷精确度低,为此提出用于短期电力负荷预测的时间序列数据深度挖掘模型。设计数据预处理电力数据仓库体系,获取电力数据,并对电力数据进行排序处理;基于数据处理结果,划分数据时间序列,建立时间序列数据深度挖掘模型,预测短期电力负荷。实验结果显示,采集同一区域的同一电力局电力信息,对短期电力负荷进行预测,预测短期电力负荷功率与实际一致,对短期电力负荷预测的精确度较高。

关 键 词:短期电力负荷  预测  时间序列  数据深度挖掘

 Design of time series data deep mining model for short term power load forecasting
Dong Liang1,Kan Xinsheng2,Deng Guoru1,Xu Jie1,Yuan Hui1.  Design of time series data deep mining model for short term power load forecasting[J]. Zhongzhou Coal, 2021, 0(6): 207-212. DOI: 10.19389/j.cnki.1003-0506.2021.06.036
Authors:Dong Liang1  Kan Xinsheng2  Deng Guoru1  Xu Jie1  Yuan Hui1
Affiliation:(1.Information and Communication Company of Hubei State Grid Corporation,Wuhan 430077,China;2.Wuhan Branch of China United Network Communication Co.,Ltd.,Wuhan 430000,China)
Abstract:Short term power load forecasting data time series disorder phenomenon,resulting in low accuracy of short-term power load forecasting.Therefore,a time series data deep mining model for short-term power load forecasting is proposed.Design data preprocessing power data warehouse system,obtain power data,and sort power data.Based on the results of data processing,the time series of data is divided,and the deep mining model of time series data is established to predict short-term power load.The experimental results show that the short-term power load is predicted by collecting the power information of the same power bureau in the same area.The predicted short-term power load is consistent with the actual short-term power load,and the accuracy of short-term power load prediction is high.
Keywords:  short term power load   forecasting   time series   data deep mining
点击此处可从《中州煤炭》浏览原始摘要信息
点击此处可从《中州煤炭》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号