首页 | 本学科首页   官方微博 | 高级检索  
     


Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells
Authors:Won‐Ik Jeong  Jane Lee  Sun‐Young Park  Jae‐Wook Kang  Jang‐Joo Kim
Affiliation:1. OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of Korea;2. Department of Material Processing, Hybride Coating Group, Korea Institute of Materials Science (KIMS), 531 Changwondaero, Changwon, Gyeongnam, 641–831, Republic of Korea
Abstract:Changes in solar cell performance related to active area size were investigated using polymer bulk heterojunction devices. Cell geometry was defined by introduction of a sub‐electrode. The cells were uniform up to 16 cm2. The solar cells showed little change in performance up to a cell area of 1 cm2. As cell area increased above 4 cm2 the power conversion efficiency dropped significantly, mostly because of fill factor (FF) drop and short circuit current density (Jsc) suppression. The changes in FF and Jsc could not be described solely by a Shockley diode equation based on an equivalent circuit model unless photocurrent collection was also considered. As cell area increased, collection efficiency deviated from unity, which further reduced device performance. That deviation is attributed to acceleration of recombination loss at low built‐in junction potentials.
Keywords:Large area solar cells  series resistance  organic photovoltaics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号