首页 | 本学科首页   官方微博 | 高级检索  
     


An Alternative Route Towards Metal–Polymer Hybrid Materials Prepared by Vapor‐Phase Processing
Authors:Seung‐Mo Lee  Vladislav Ischenko  Eckhard Pippel  Admir Masic  Oussama Moutanabbir  Peter Fratzl  Mato Knez
Affiliation:1. Max Planck Institute of Microstructure Physics, Weinberg 2, D‐06120 Halle (Saale), Germany;2. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D‐14424 Potsdam, Germany
Abstract:Transition metals incorporated into polymers lead to unusual or improved physical properties that significantly differ from those of purely organic polymers. A simple and practicable incorporation of diverse transition metals into any available polymer would make an important contribution to overcome some of the synthetic difficulties of metal‐polymer hybrid materials. Here, it is demonstrated that atomic layer deposition (ALD) can be a promising means to resolve some of those difficulties. It is found that even polytetrafluoroethylene (PTFE) with its great physical and chemical stability can be easily transformed into a transition metal–PTFE hybrid material simply by applying a metal‐oxide ALD process to PTFE. Upon metal incorporation into the PTFE, the molecular structure as well as mechanical properties (tensile behavior) of PTFE were observed to significantly change. For a better understanding of the changes to the material, experimental investigations using Raman spectroscopy, attenuated‐total‐reflection Fourier‐transform infrared spectroscopy, wide‐angle X‐ray diffraction, and energy‐dispersive X‐ray analysis were performed. In addition, with density functional theory calculations, potential bonding states of the incorporated metal into PTFE were modeled and predicted. The ALD‐based vapor‐phase approach for metal incorporation into a polymer could bring about rapid progress in the research area of metal–polymer hybrid materials.
Keywords:metal–  polymer hybrid materials  polytetrafluoroethylene (PTFE)  atomic layer deposition  transition metals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号