首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的余氯浓度预测模型研究
引用本文:谢昕,郭鹏飞,詹小丽. 基于RBF神经网络的余氯浓度预测模型研究[J]. 传感器与微系统, 2012, 31(8): 64-65,68
作者姓名:谢昕  郭鹏飞  詹小丽
作者单位:华东交通大学信息工程学院,江西 南昌,330013
基金项目:江西省科技支撑计划资助项目
摘    要:余氯浓度是衡量供水管网水质的一个重要指标,采用混沌理论、模型校正等传统方法不能准确反映余氯浓度变化规律。根据RBF神经网络快速收敛和全局优化的特点,基于时间序列法,建立RBF神经网络余氯浓度预测模型。采用Matlab中的Newrbe函数进行函数逼近,结合某管网水质模拟控制系统提供的样本数据进行仿真计算,最终获得的余氯浓度预测值和实测值十分吻合。结果表明:RBF神经网络预测模型具有一定的工程实用价值。

关 键 词:RBF神经网络  预测模型  时间序列  余氯浓度

Research on prediction model of residual chlorine concentration based on RBF neural network
XIE Xin , GUO Peng-fei , ZHAN Xiao-li. Research on prediction model of residual chlorine concentration based on RBF neural network[J]. Transducer and Microsystem Technology, 2012, 31(8): 64-65,68
Authors:XIE Xin    GUO Peng-fei    ZHAN Xiao-li
Affiliation:(School of Information Engineering,East China Jiaotong University,Nanchang 330013,China)
Abstract:The concentration of residual chlorine is an important parameter indicating the quality of water in water distribution network,but the traditional methods,such as chaos theory and model calibration,cannot reflect the variation rule of residual chlorine thoroughly.A prediction model of residual chlorine is established,based on the fast convergence and global optimization of RBF neural network and time series.The Newrbe function in Matlab is adopted to realize function approximation,combining with the sample data provided by the water quality control system of water distribution network to run simulation.The difference between predicted residual chlorine fit actual ones,which means this model has practical value.
Keywords:RBF neural network  prediction model  time serie  residual chlorine concentration
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号