首页 | 本学科首页   官方微博 | 高级检索  
     

基于LHMM的聚众异常事件实时检测改进方法
引用本文:邓德迎,唐晓辉. 基于LHMM的聚众异常事件实时检测改进方法[J]. 传感器与微系统, 2012, 31(7): 39-41
作者姓名:邓德迎  唐晓辉
作者单位:1. 桂林电子科技大学信息与通信学院,广西桂林,541004
2. 桂林航天工业高等专科学校电子工程系,广西桂林,541004
摘    要:提出了一种改进的分层隐马尔科夫模型(LHMM)结合熵值的聚众异常事件实时检测方法。使用直方图均衡化对视频帧做预处理,增加图像质量;以分块区域中的人数和总速度作为观察值分两层训练出聚众事件的LHMM。当观察值序列与模型的相似度大于设定阈值时,利用光流法计算该帧熵值,当熵值大于设定阈值时,则认为聚众事件发生;否则,为非聚众事件,继续下一帧的处理。大量实验结果表明:改进的方法具有较高的识别率、较好的鲁棒性和高的处理速度,并且应用环境更广。

关 键 词:直方图均衡化  分层隐马尔科夫模型    聚众事件

An improved method based on LHMM for gathering abnormal event realtime detection
DENG De-ying , TANG Xiao-hui. An improved method based on LHMM for gathering abnormal event realtime detection[J]. Transducer and Microsystem Technology, 2012, 31(7): 39-41
Authors:DENG De-ying    TANG Xiao-hui
Affiliation:1.School of Information and Communication,Guilin University of Electronic Technology, Guilin 541004,China; 2.Department of Electronic Engineering,Guilin College of Aerospace Technology,Guilin 541004,China)
Abstract:An improved layered hidden Markov model(LHMM) and entropy value of real-time detection method for gathering abnormal event detection is presented.The video frame is preprocessed using histogram equalization to increase image quality;the number of people and the total speed of people in block area as the observed values, then gathering event’s LHMM in two levels is trained.When the similarity between observation sequences and the model is greater than certain threshold,then calculate the entropy of the frame by using optical flow method.When the entropy value is greater than the certain threshold,a gathering event is judged to happen;otherwise,it is not a gathering event and continues to process next frame.A large number of experimental results show that the proposed method has higher recognition rate,better robustness and high processing speed and wider applications.
Keywords:histogram equalization  LHMM  entropy  gathering event
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号