首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘技术的带钢力学性能质量模型
引用本文:王丹民,李华德,李擎. 基于数据挖掘技术的带钢力学性能质量模型[J]. 计算机工程, 2007, 33(1): 244-246
作者姓名:王丹民  李华德  李擎
作者单位:北京科技大学信息工程学院,北京,100083
摘    要:介绍了建立热轧带钢力学性能质量模型的数据挖掘过程。用普通神经网络建立起由工艺参数预测力学性能的质量模型,模型预测结果的5%命中率是0.508。提出了一种新的建模方法──逐层逼近法,并用它建立起质量模型,预测结果的5%命中率达到0.721,完全可以满足现实生产需要。

关 键 词:数据挖掘  人工神经网络  力学性能
文章编号:1000-3428(2007)01-0244-03
修稿时间:2006-01-05

Quality Model of Mechanical Properties of Hot-rolled Steel Strip Established with Data Mining Technology
WANG Danmin,LI Hnade,LI Qing. Quality Model of Mechanical Properties of Hot-rolled Steel Strip Established with Data Mining Technology[J]. Computer Engineering, 2007, 33(1): 244-246
Authors:WANG Danmin  LI Hnade  LI Qing
Affiliation:School of Information Engineering, University of Science and Technology Beijing, Beijing 100083
Abstract:The data mining process of establishing the quality model is introduced,that could predict the mechanical properties of hot-rolled steel strip with the technological parameter.The quality model whose hit ratio of 5% deviation reach 0.508 is established by applying the technology of basic artificial neural network.The quality model whose hit ratio of 5% deviation reach 0.721 is established by applying the technology oflayer-of-layer impending,and this model could meet current industrial demand fully.
Keywords:Data mining  Artificial neural network  Mechanical properties  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号