首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a networks-of-zones fluid mixing model for an unbaffled stirred vessel used for precipitation
Authors:M. Kagoshima
Affiliation:School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M60 1QD, UK
Abstract:Reactive acid-alkali tracers have been deployed to capture the macromixing and partial segregation behaviour in an unbaffled stirred vessel. This configuration is often used in precipitators to avoid inadvertent solid accretions on vessel internals. The macromixing behaviour for semi-batch addition with visualisation of reactive (acid-alkali) tracers has been acquired via video images which are rendered visible using phenolphthalein as indicator. By means of visual reality modelling, in which computer graphics are used to reconstruct and closely mimic the experimentally visualised fluid mixing “scenes”, the parameters for a networks-of-zones mixing model for the unbaffled semi-batch case have been established. The model can then be used for predicting precipitation behaviour for single-jet and other modes of operation. Some illustrative examples for barium sulphate, showing the underlying supersaturation fields in 3-D and the consequent time evolving particle size distributions, are presented and discussed for a single jet case.
Keywords:Fluid mixing   Chemical reactors   Stirred vessel   Batch   Precipitation   Particle size distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号