首页 | 本学科首页   官方微博 | 高级检索  
     


PEG-based bioresponsive hydrogels with redox-mediated formation and degradation
Authors:Fan Yang  Jing Wang  Geng Peng  Sichao Fu  Shuo Zhang  Changsheng Liu
Affiliation:(1) Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, P.O. Box 112, Shanghai, 200237, People’s Republic of China
Abstract:A hydrogel which will undergo macroscopic transition responding to redox stimuli is prepared. Mercapto precursors are prepared from 4-armed polyethylene glycol and after deprotection of thiolate anions, they can transform into disulfide crosslinked hydrogels within 3 min by responding to oxidant H2O2. Desirable elasticity is exhibited with a wide range of storage modulus from 50 Pa to 14 kPa through rheological investigation. In addition, the hydrogels are found to be hydrolytically stable but degrade within 75 days when exposed to reductant such as glutathione (GSH). So gelation time and degradation behavior can be regulated by concentrations of precursor, oxidant, reductant, temperature, and pH value. Notably, interest arises from the long-period degradation under low GSH concentration of 0.01 mM that is similar to extracellular level, but not the fast disintegration under high concentration intracellular, providing the possibility of “smart” degradation responding to those cell-secreted biomacromolecules during the process of tissue regeneration. Furthermore, both hydrogels and their degradation products show cell viability above 90% culturing with C2C12 cells, representing nontoxic properties. Such a stimuli-responsive degradation strategy will give promising application in tissue repair and regeneration; especially enable the achievement of matching the degradation kinetics with physiological environment.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号