首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of aggregate content on the migration coefficient of concrete materials using electrochemical method
Authors:C. C. Yang  S. W. Cho
Affiliation:

a Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan, ROC

b Department of Building Engineering & Architecture, China Institute of Technology, Taipei, Taiwan, ROC

Abstract:In order to investigate the effect of coarse aggregate content on the chloride ion migration coefficient of concrete, specimens with different coarse aggregate volume fractions and two water/cement (w/c) ratios of mortar matrix were used. The chloride ion migration coefficient of concrete is obtained using the electrochemical technique to accelerate chloride ion migration in cement-based material and the experimental results were plotted as a function of the fine aggregate volume fraction. The results are analyzed comparing experimental results and theoretical models that represent the concretes as three-phase composite materials. The three phases are the mortar matrix, the coarse aggregate, and the interfacial transition zone between the two. The chloride ion migration coefficient is used to assess the dilution, tortuosity, interfacial transition zone (ITZ) and, percolation effects of coarse aggregate in concrete. It appears that the dilution and tortuosity effects are a dominant factor affecting the chloride ion migration coefficient of concrete in the low volume fraction of coarse aggregate. As the volume fraction of coarse aggregate increases to 40 and 20% in concrete of w/c ratio 0.35 and 0.45, respectively, the ITZ with percolation effects are significantly.
Keywords:Concrete   Migration coefficient   Coarse aggregate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号