首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid solar cells based on CuInS2 and organic buffer-sensitizer layers
Authors:S Bereznev  R Koeppe  J Kois  A Öpik  NS Sariciftci
Affiliation:a Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn, Estonia
b Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
c Universität Leipzig, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, Linnéstr. 2, 04103 Leipzig, Germany
Abstract:Hybrid solar cells on the basis of CuInS2 (CIS) photoabsorber on Cu-tape (CISCuT) in combination with organic buffer layers of Zn-phthalocyanine (ZnPc), ZnPc:fullerene (ZnPc:C60) composite and conductive polymer buffer layers of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS) were prepared using vacuum evaporation and spin-casting techniques. To prepare solar cells with an active area of 2 cm2, the appropriate deposition parameters and thickness of ZnPc, ZnPc:C60 and PEDOT-PSS layers were selected experimentally. For preparation of semitransparent contact-window layers, chromium and gold were evaporated on the surface of ZnPc, ZnPc:C60 and PEDOT-PSS films. It was found that an intermediate chromium layer improves PV properties of the structures with organic buffer layers. The photosensitivity at small illumination intensities of complete structures with ZnPc and ZnPc:C60 layers increased more than one order of magnitude in comparison with the structures where the PEDOT-PSS buffer layer was deposited. The presence of C60 in the composite-buffer layer results in increased photoconductivity. The best structure with composite ZnPc:C60 buffer layer showed an open-circuit voltage of 560 mV, a short-circuit current density of around 10 mA/cm2 and a photoconversion efficiency of around 3.3% under the light illumination with an intensity of 100 mW/cm2 from a tungsten-halogen lamp. The low transmission of the semitransparent chromium-gold window layer is the reason for relatively low current density.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号