首页 | 本学科首页   官方微博 | 高级检索  
     

混沌粒子群优化的纹理合成算法研究
引用本文:瞿中,李楠. 混沌粒子群优化的纹理合成算法研究[J]. 计算机科学, 2010, 37(10): 275-278
作者姓名:瞿中  李楠
作者单位:重庆邮电大学计算机学院,重庆,400065
基金项目:本文受重庆市教委项目(0834218),重庆邮电大学博士启动基金(A2009-11),重庆邮电大学项目(2009ZDKC2)资助。
摘    要:粒子群算法在搜索后期由于搜索空间有限,容易陷入局部极值,过早地进入早熟状态。针对这种情况,将混沌优化搜索技术用于粒子群算法,利用混沌运动的通历性、随机性等特点,提出了一种混沌粒子群优化的块采样纹理合成算法。实验结果表明,混沌粒子群算法比粒子群算法具有更好的全局寻优能力,克服了粒子群算法的缺点,得到了较高质量的纹理合成图像。

关 键 词:混沌粒子群算法,纹理合成,块采样,粒子群算法
收稿时间:2009-11-03
修稿时间:2010-02-01

Algorithm of Texture Synthesis Based on Chaos Particle Swarm Optimization
QU Zhong,LI Nan. Algorithm of Texture Synthesis Based on Chaos Particle Swarm Optimization[J]. Computer Science, 2010, 37(10): 275-278
Authors:QU Zhong  LI Nan
Affiliation:(College of Computer Science & Technology,Chongqing University of Posts & Telecommunications,Chongqing 400065,China)
Abstract:As the searching space is limited in its later search, the particle swarm optimization algorithm factors is easy to fall into local minimum, and access to the premature state curly. In response to these circumstances, a new patch-based method for texture synthesis based on chaos particle swarm optimization was proposed. Chaos optimization search technique was used in particle swarm optimization in this paper. The experimental result shows that comparing with particle swarm optimization, chaos particle swarm optimization has better optimization performance, overcomes the disadvantage of particle swarm optimization, and gains the texture synthesis image of higher quality.
Keywords:Chaos particle swarm optimization   Texture synthesis   Patch-based sampling   Particle swarm optimization
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号