首页 | 本学科首页   官方微博 | 高级检索  
     


A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows
Authors:Junseok Kim  
Affiliation:aDepartment of Mathematics, Korea University, Seoul 136-701, Republic of Korea
Abstract:We present a new phase-field method for modeling surface tension effects on multi-component immiscible fluid flows. Interfaces between fluids having different properties are represented as transition regions of finite thickness across which the phase-field varies continuously. At each point in the transition region, we define a force density which is proportional to the curvature of the interface times a smoothed Dirac delta function. We consider a vector valued phase-field, the velocity, and pressure fields which are governed by multi-component advective Cahn–Hilliard and modified Navier–Stokes equations. The new formulation makes it possible to model any combination of interfaces without any additional decision criteria. It is general, therefore it can be applied to any number of fluid components. We give computational results for the four component fluid flows to illustrate the properties of the method. The capabilities of the method are computationally demonstrated with phase separations via a spinodal decomposition in a four-component mixture, pressure field distribution for three stationary drops, and the dynamics of two droplets inside another drop embedded in the ambient liquid.
Keywords:Continuum surface tension  Phase-field model  Navier–  Stokes equation  Multi-component Cahn–  Hilliard equation  Interfacial tension  Nonlinear multigrid method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号