首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different base-materials
Authors:Dieter Bohn and Robert Krewinkel
Affiliation:(1) Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No.15, Pardis St., Mola Sadra St., Vanak Sq., Tehran, Iran
Abstract:Within Collaborative Research Center (SFB) 561 “Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants” at RWTH Aachen University, an effusion-cooled multi-layer plate configuration is investigated numerically by the application of a three-dimensional in-house fluid flow and heat transfer solver, CHTflow. CHTflow is a conjugate code, which yields information on the temperature distribution in the solid body. This enables a detailed discussion of the effects of a change in materials. The geometrical set-up and the fluid flow conditions derive from modern gas turbine combustion chambers and bladings. Within the SFB, two different multi-layer systems, one consisting of substrate made of CMSX-4 (a singlecrystal super-alloy), anMCrAlY-bondoat and a ZrO2 thermal barrier coating (TBC), and the other consisting of a NiAlalloy and a graded bondcoat/TBC, have been investigated. The grading will increase the life-span of the TBC as it can better compensate the different thermal expansion coefficients of different materials. The main focus in this study is on the different substrate materials, because the thermal conductivity of the NiAl is considerably higher than that of CMSX-4, which leads to different temperature profiles in the components.
Keywords:
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号