首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知的电力设备视频图像去噪方法研究
引用本文:于华楠,武云瑞. 基于压缩感知的电力设备视频图像去噪方法研究[J]. 电测与仪表, 2016, 53(18). DOI: 10.3969/j.issn.1001-1390.2016.18.003
作者姓名:于华楠  武云瑞
作者单位:1. 东北电力大学信息工程学院,吉林吉林,132012;2. 东方电子股份有限公司,山东烟台,264000
基金项目:国家自然科学基金项目(551307020)
摘    要:针对电力视频监控图像中存在的噪声,结合压缩感知理论,采用基于过完备字典的稀疏表示方法进行去噪。使用噪声图像训练过完备字典,其中过完备字典的更新使用K-SVD算法,求解稀疏系数使用OMP算法,且根据算法的特点引入了Dice匹配准则来改进正交匹配追踪算法用于求解稀疏系数,最后重构去噪后的图像。Matlab仿真实验表明,对添加了不同标准差的高斯噪声的图像,文中方法具有良好的去噪效果,与目前常用的小波函数相比,能更好的降低图像中的高斯白噪声,并且在字典训练过程中直接使用视频拍摄的带噪声图像,即使没有原始的无噪声图像依然能够完成去噪任务。

关 键 词:压缩感知  稀疏表示  去噪  K-SVD
收稿时间:2015-05-25
修稿时间:2015-09-30

The Research of Power Equipments Image Denoising Algorithm Based on Compressed Sensing
yuhuanan and wuyunrui. The Research of Power Equipments Image Denoising Algorithm Based on Compressed Sensing[J]. Electrical Measurement & Instrumentation, 2016, 53(18). DOI: 10.3969/j.issn.1001-1390.2016.18.003
Authors:yuhuanan and wuyunrui
Affiliation:northeast dianli university,northeast dianli university
Abstract:We address the image de-nosing problem in the video surveillance system in smart grid , the approach is based on compressed sensing and sparse representation theory over over -complete dictionary .We train dictionary by noisy image , and use K-SVD algorithm to update dictionary and OMP to compute sparse representation coefficients . An improved orthogonal matching pursuit algorithm based on atomic matching criterion of Dice coefficient is used to re -construct images.Finally, we can get the de-noised image.The Matlab simulation experiments show that this method is an effective de-noising algorithm , and the de-noising result for Gaussian white noise is better than the wavelet func-tions.Using the video images which is corrupted to train the dictionary , while the de-noising task could be completed efficiently even there is no high-quality original image .
Keywords:compressed sensing  sparse representation  de-noising  K-SVD
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号