首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel FETI‐DP algorithm for efficient simulation of large‐scale EM problems
Authors:Kedi Zhang  Jian‐Ming Jin
Abstract:An efficient parallelization of the dual‐primal finite‐element tearing and interconnecting (FETI‐DP) algorithm is presented for large‐scale electromagnetic simulations. As a nonoverlapping domain decomposition method, the FETI‐DP algorithm formulates a global interface problem, whose iterative solution is accelerated with a solution of a global corner problem. To achieve a good load balance for parallel computation, the original computational domain is decomposed into subdomains with similar sizes and shapes. The subdomains are then distributed to processors based on their close proximity to minimize inter‐processor communication. The parallel generalized minimal residual method, enhanced with the iterative classical Gram‐Schmidt orthogonalization scheme to reduce global communication, is adopted to solve the global interface problem with a fast convergence rate. The global corner‐related coarse problem is solved iteratively with a parallel communication‐avoiding biconjugate gradient stabilized method to minimize global communication, and its convergence is accelerated by a diagonal preconditioner constructed from the coarse system matrix. To alleviate neighboring communication overhead, the non‐blocking communication approach is employed in both generalized minimal residual and communication‐avoiding biconjugate gradient stabilized iterative solutions. Three numerical examples are presented to demonstrate the accuracy, scalability, and capability of the proposed parallel FETI‐DP algorithm for electromagnetic modeling of general objects and antenna arrays. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:domain decomposition method (DDM)  dual‐primal finite‐element tearing and interconnecting (FETI‐DP)  parallel computation  electromagnetic radiation and scattering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号