首页 | 本学科首页   官方微博 | 高级检索  
     

一种非线性约束优化的微粒群新算法
引用本文:张喆,孟庆春,薛任,高云,刘敏,张淑军. 一种非线性约束优化的微粒群新算法[J]. 哈尔滨工业大学学报, 2006, 38(10): 1716-1718
作者姓名:张喆  孟庆春  薛任  高云  刘敏  张淑军
作者单位:中国海洋大学,计算机系,青岛,266071;青岛理工大学,山东,青岛,266520;中国海洋大学,计算机系,青岛,266071;清华大学,智能技术与系统国家重点实验室,北京,100084;南阳市计算机中心,河南,南阳,47300;中国海洋大学,计算机系,青岛,266071
摘    要:通过对标准微粒群算法(PSO)改进,采用动态罚函数的方法,提出了一种求解非线性约束优化问题的新算法.由于使用了一种新的适应度函数,该算法具有很强的全局寻优能力.

关 键 词:全局寻优  微粒群  动态罚函数  适应度函数  非线性约束优化
文章编号:0367-6234(2006)10-1716-03
收稿时间:2004-12-24
修稿时间:2004-12-24

A new algorithm for solving nonlinear constrained optimization problems with particle swarm optimizer
ZHANG Zhe,MENG Qing-chun,XUE Ren,GAO Yun,LIU Min,ZHANG Shu-jun. A new algorithm for solving nonlinear constrained optimization problems with particle swarm optimizer[J]. Journal of Harbin Institute of Technology, 2006, 38(10): 1716-1718
Authors:ZHANG Zhe  MENG Qing-chun  XUE Ren  GAO Yun  LIU Min  ZHANG Shu-jun
Affiliation:1. Dept. of Computer Science, Ocean University of China, Qingdao,266071, China; 2. Qingdao Technological University, Qingdao 266520,China; 3. State Key Laboratory of lntelli-gent Technology and Systems, Tsinghua University, Beijing 100084, China; 4. Nanyang Computer Center,473000,China
Abstract:This Paper presents a new evolutionary algorithm for solving nonlinear constrained optimization problems based on particle swarm optimizer(PSO).Dynamic penalty function is adopted in this algorithm to transform the constrained optimization problems into unconstrained optimization problems. Because a new fitness function which is able to get global minimum has been proposed,the new algorithm has shown its powerful ability for solving nonlinear constrained optimization problems in the benchmark tests.
Keywords:global optimization  particle swarm optimizer  dynamic penalty function  fitness function  nonlinear constrained optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号