首页 | 本学科首页   官方微博 | 高级检索  
     


Use of Ozone for Disinfection and Taste and Odor Control at Proposed Membrane Facility
Authors:Jessica Edwards-Brandt  Holly Shorney-Darby  Jeff Neemann  Jay Hesby  Conrad Tona
Affiliation:1. Black &2. Veatch , Walnut Creek, California, USA;3. Veatch , Kansas City, Missouri, USA;4. Veatch , Sacramento, California, USA;5. Zone 7, Alameda County Flood Control and Water Conservation District , California, USA
Abstract:Zone 7 of Alameda County Flood Control and Water Conservation District, in coordination with Black & Veatch, conducted a 9-month pilot study to determine preliminary design parameters for a new water treatment plant (WTP). The pilot study was performed to verify the performance of membrane filters and to establish preliminary design parameters for the submerged membrane process, followed by ozonation and biological granular activated carbon filtration. The pilot testing was conducted using water from the Patterson Pass WTP reservoir. The process included coagulation with either ferric chloride or polyaluminum chloride, flocculation, sedimentation, membrane filtration, ozonation, and filtration using biological granular activated carbon (BAC). The goals of the study were as follows:
  1. Determine the potential effectiveness of ozone and BAC for removing geosmin and MIB.

  2. Determine the impacts of different levels of pathogen inactivation, i.e., 0.5-log Giardia and 2-log virus inactivation.

  3. Monitor the formation of bromate under various conditions of ozone oxidation for different levels of pathogen inactivation as well as for taste and odor control, and evaluate bromate mitigation strategies, if necessary.

The results of the study showed that the use of ozone achieved 2.0-log virus inactivation and 0.5-log Giardia inactivation. It also decreased the disinfection by-product formation and effectively controlled geosmin and removed a significant fraction of the MIB during a taste and odor event. Because the raw water bromide concentrations were low, bromate formation remained below the regulated level of 0.010 mg/L. However, in one instance, bromate mitigation was utilized by applying sulfuric acid to lower the pH to less than 7.1, which reduced bromate formation to less than 0.010 mg/L.

Keywords:Ozone  Biologically Active Filtration  Disinfection  Taste and Odor  Bromate Mitigation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号