首页 | 本学科首页   官方微博 | 高级检索  
     


Digital optical signal processing with polarization-bistable semiconductor lasers
Authors:Jai-Ming Liu Ying-Chin Chen
Affiliation:GTE Laboratories, Inc., Waltham, MA, USA;
Abstract:The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked opticalS-R, D, J-K,andTflip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarization-switchable mode, the output of the laser can be directly switched between the TM00and TE00modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved power versus current characteristics. When the laser is biased in the middle of hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarization-bistable laser to < 1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号