首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络和多元Taylor级数的混合定位算法
引用本文:杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报(工学版), 2019, 49(1): 36-40. DOI: 10.6040/j.issn.1672-3961.0.2017.524
作者姓名:杨亚楠  夏斌  谢楠  袁文浩
作者单位:山东理工大学计算机科学与技术学院, 山东 淄博 255000
基金项目:国家自然科学基金(61701286);山东省自然科学基金(ZR2017MF047)
摘    要:针对多元Taylor级数算法定位精度严重依赖初始值的问题,提出一种新的混合定位算法。通过BP神经网络定位算法提供初始值,提高多元Taylor级数展开法的收敛速度;通过多元Taylor级数展开法,充分利用未知节点之间的距离信息,减小测距误差造成的定位误差。仿真结果表明:混合定位算法的精度更高,并且减少了网格间距对定位精度的影响。

关 键 词:多元变量泰勒级数展开  定位模型  BP神经网络  定位精度  混合定位  
收稿时间:2017-10-23

Hybrid localization algorithm based on BP neural network and multivariable Taylor series
Ya'nan YANG,Bin XIA,Nan XIE,Wenhao YUAN. Hybrid localization algorithm based on BP neural network and multivariable Taylor series[J]. Journal of Shandong University of Technology, 2019, 49(1): 36-40. DOI: 10.6040/j.issn.1672-3961.0.2017.524
Authors:Ya'nan YANG  Bin XIA  Nan XIE  Wenhao YUAN
Affiliation:School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China
Abstract:The positioning accuracy of the multivariable Taylor series algorithm depended heavily on the initial values, so a novel hybrid localization algorithm was proposed. The initial values offered by back-bropagation(BP) neural network algorithm could improve the convergence speed of multivariable Taylor series expansion method, and the multivariable Taylor series expansion method could reduce the position error caused by distance measurement error through making full use of the distance information of the unknown nodes. Experimental results indicated that the algorithm could improve positioning accuracy and reduced the influence of mesh spacing on location accuracy.
Keywords:multivariable Taylor series expansion  positioning model  back-propagation neural network  positioning accuracy  hybrid localization  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号