首页 | 本学科首页   官方微博 | 高级检索  
     


One-pot synthesis of soluble wholly aromatic liquid crystalline copoly(ester amide)s with high thermal and dimensional stability
Authors:Quang Vinh Nguyen
Affiliation:Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang, Vietnam
Abstract:Abstract

Thermotropic liquid crystalline polymers (LCPs) have been of great interest for electronic packaging. Herein, we introduce a series of wholly aromatic, thermotropic LCPs from copoly(ester amide)s of 6-hydroxy-2-naphthalic acid, isophthalic acid, terephthalic acid, and 4-aminophenol, prepared by a convenient one-pot melt polycondensation. Almost synthesized copoly(ester amide)s exhibited good solubility in common organic solvents at room temperature. Furthermore, they possessed high thermal stability with 2% degradation temperatures (Tid) of 359–368?°C and the char yields (at 600?°C) of 50.3–55.6%. The synthesized copoly(ester amide)s had relatively low coefficient of thermal expansion (CTE) values, which were 35.85–41.21?ppm °C?1 in the temperature range of 50–200?°C. Furthermore, an annealing process could be employed to improve the thermomechanical properties of synthesized polymers. For instance, the CTE of sample LCP3 in range temperature of 275–315?°C was reduced by more than 90% after annealing at 320?°C for 1?h, implying the feasibility for electronic packaging.
Keywords:Copolycondensation  Liquid crystalline polymer  Multiblock copolymer  Polyester amide  Thermal properties  Thermotropic main chain LCP
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号