Surrogate-model-based,particle swarm optimization,and genetic algorithm techniques applied to the multiobjective operational problem of the fluid catalytic cracking process |
| |
Authors: | José F. Cuadros Bohorquez Laura Plazas Tovar Maria Regina Wolf Maciel Delba C. Melo Rubens Maciel Filho |
| |
Affiliation: | 1. School of Chemical Engineering, University of Campinas (UNICAMP), S?o Paulo, Brazil;2. josefcuadros.unicamp@outlook.com;4. Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of S?o Paulo (UNIFESP), S?o Paulo, Brazil |
| |
Abstract: | AbstractThis article provides a concise multiobjective optimization methodology for an industrial fluid catalytic cracking unit (FCCU) considering stochastic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO), based on surrogates or meta-models in order to approximate the objective function. A FCCU was considered and simulated in an AspenONE process simulator. In addition the article examines the claim that PSO has the same effectiveness (finding the optimal global solution) as GA, but with significantly better computational efficiency (fewer function evaluations). The optimization results obtained with the PSO technique, based on the evaluation of less functions and adjustment of less parameters, showed a 3% increase in yield of naphtha as compared to results obtained with the GA technique. Finally, the results of the optimization obtained with the stochastic optimization techniques were compared and analyzed with a deterministic one. The performance targets of the multiobjective operational optimization supported the FCCU design and production planning to ensure refinery profitability and a regulatory environment. |
| |
Keywords: | Fluid catalytic cracking Genetic algorithms Multiobjective optimization Particle swarm optimization Surrogate models |
|
|