首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群算法在气力输送管道压降预测中的应用
引用本文:袁庆丹,梁燕飞,肖燕平. 粒子群算法在气力输送管道压降预测中的应用[J]. 测试技术学报, 2012, 0(3): 256-259
作者姓名:袁庆丹  梁燕飞  肖燕平
作者单位:佛山科学技术学院机电系;佛山市华联有机硅有限公司
基金项目:广东省科技计划项目(节能环保型轻质粉体供料装置的开发与应用2010B010900041);佛山市科技发展专项资金项目(节能环保型轻质材料供料装置的研制与应用2009020)
摘    要:管道压降是气力输送系统设计的一个重要参数,传统的求解方法比较复杂.本文提出了以气体流速、颗粒浓度、混合比等作为神经网络输入,建立管道压降网络模型的方法.为进一步提高管道压降预测准确度,以预测误差作为适应度值,采用粒子群算法对网络权值和阈值寻优,优化神经网络,并利用样本数据训练出了有效的压降预测网络.通过将预测数据和粉料气力输送实验装置的实测数据相比较,结果表明,该方法预测误差小,准确度高,有较高的实用价值.

关 键 词:粒子群算法  神经网络  气力输送  管道压降  预测

Application of Particle Swarm Optimization to Pressure Drop Prediction of Pneumatic Transport Pipe
YUAN Qingdan,LIANG Yanfei,XIAOYanping. Application of Particle Swarm Optimization to Pressure Drop Prediction of Pneumatic Transport Pipe[J]. Journal of Test and Measurement Techol, 2012, 0(3): 256-259
Authors:YUAN Qingdan  LIANG Yanfei  XIAOYanping
Affiliation:1.Dept.of Mechatronics,Foshan University,Foshan 528000,China;2.Foshan Hualian Organosilicon Co,.Ltd,Foshan 528000,China)
Abstract:Pipe Pressure drop is an important parameter of pneumatic transport system design,the traditional solution method is relatively complex.This paper proposes a method which establishes the pipe pressure drop predictive network model by taking gas flow rate,particle concentration and mixture ratio as the inputs of the neural network.In order to further improve the predictive precision of pipe pressure drop,the particle swarm algorithm is used to optimize the network weight and the threshold value by taking prediction error as the fitness value.In addition,an effective pressure drop prediction network is trained by using the sample data.By comparing the prediction data with the measured data of the powder pneumatic transport experimental device,the result demonstrates that the method has high precision and relatively high practical value.
Keywords:particle swarm optimization  Neural Network  pneumatic transport  pipe pressure drop  prediction
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号