首页 | 本学科首页   官方微博 | 高级检索  
     


Precision,Local Search and Unimodal Functions
Authors:Martin Dietzfelbinger  Jonathan E Rowe  Ingo Wegener  Philipp Woelfel
Affiliation:(1) Department of Electrical Engineering, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran
Abstract:We investigate the effects of precision on the efficiency of various local search algorithms on 1-D unimodal functions. We present a (1+1)-EA with adaptive step size which finds the optimum in O(log n) steps, where n is the number of points used. We then consider binary (base-2) and reflected Gray code representations with single bit mutations. The standard binary method does not guarantee locating the optimum, whereas using the reflected Gray code does so in Θ((log n)2) steps. A(1+1)-EA with a fixed mutation probability distribution is then presented which also runs in O((log n)2). Moreover, a recent result shows that this is optimal (up to some constant scaling factor), in that there exist unimodal functions for which a lower bound of Ω((log n)2) holds regardless of the choice of mutation distribution. For continuous multimodal functions, the algorithm also locates the global optimum in O((log n)2). Finally, we show that it is not possible for a black box algorithm to efficiently optimise unimodal functions for two or more dimensions (in terms of the precision used).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号