首页 | 本学科首页   官方微博 | 高级检索  
     

基于金属氧化物传感器阵列的小麦霉变程度检测
引用本文:林振华,张红梅,姜水,王俊. 基于金属氧化物传感器阵列的小麦霉变程度检测[J]. 传感技术学报, 2018, 31(7): 1017-1023. DOI: 10.3969/j.issn.1004-1699.2018.07.007
作者姓名:林振华  张红梅  姜水  王俊
作者单位:浙江同济职业技术学院,杭州311231;浙江大学生物系统工程与食品科学学院,杭州310029浙江大学生物系统工程与食品科学学院,杭州,310029
基金项目:国家十三五重点研发项目(2017YFD0400100)
摘    要:研制了一套由8个金属氧化物传感器组成、用于检测小麦霉变的电子鼻系统.使用该电子鼻对不同霉变程度和掺入不同百分比含量霉麦的小麦样品进行检测.通过方差分析和主成分分析优化传感器阵列并去掉冗余传感器,对优化后的数据进行主成分分析(PCA)和线性判别分析(LDA),其中PCA的前两个主成分对两类实验结果分析的总贡献率为98.30%和99.27%,LDA前两个判别因子对两类实验结果分析的总贡献率为99.68%和93.30%,且由得分图可知两种方法均能很好地区分不同的小麦样品.利用BP神经网络建立预测模型,对样品菌落总数和掺入样品中霉麦的百分比进行预测.两种预测模型的预测值和测量值之间的相关系数分别为0.91和0.94,表明预测模型具有较好预测性能.

关 键 词:电子鼻  传感器阵列优化  主成分分析  BP神经网络  菌落总数

Detection of moldy wheat using MOS sensor array in electronic nose
LIN Zhenhua,JIANG Shui,Zhang Hongmei,WANG Jun. Detection of moldy wheat using MOS sensor array in electronic nose[J]. Journal of Transduction Technology, 2018, 31(7): 1017-1023. DOI: 10.3969/j.issn.1004-1699.2018.07.007
Authors:LIN Zhenhua  JIANG Shui  Zhang Hongmei  WANG Jun
Abstract:In this study, an electronic nose was developed to detect the moldy wheat. Different wheat samples which had different degree of mildew and were mixed with different percentage of moldy wheat were detected by this electronic nose system. Analysis of variance and principal component analysis (PCA) were applied to optimize the sensor array and 2 redundant sensors were removed. PCA and linear discriminant analysis (LDA) methods were used to qualitatively analysis the optimized data of electronic nose. The total contributions of first two principal components in PCA were 98.30% and 99.27%, and the total contributions of first two discriminant functions in LDA were 99.68% and 93.30%, respectively. The analysis of PCA and LDA indicated that both of the two methods had good classification performance. BP neural network were applied to build the predictive models to predict the aerobic bacterial count in the samples and the percentage of moldy wheat mixed into the samples. The correlation coefficient between the predictive values and virtual values of the two predictive models were 0.91 and 0.94 which indicated that the predictive models had good prediction performance.
Keywords:electronic nose   optimization of sensor array   principal component analysis (PCA)   BP neural network   aerobic bacterial count
本文献已被 万方数据 等数据库收录!
点击此处可从《传感技术学报》浏览原始摘要信息
点击此处可从《传感技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号