首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于SVM的核相关跟踪算法
引用本文:袁康,魏大鹏,赵从梅,傅顺. 一种基于SVM的核相关跟踪算法[J]. 传感器与微系统, 2018, 0(5): 138-143. DOI: 10.13873/J.1000-9787(2018)05-0138-06
作者姓名:袁康  魏大鹏  赵从梅  傅顺
作者单位:重庆邮电大学计算机科学与技术学院,重庆,400065中国科学院重庆绿色智能技术研究院,重庆,400714
摘    要:基于相关滤波器的跟踪方法在准确度和鲁棒性上取得了突出优势,但仍需要提高整体的跟踪性能.针对传统单目标的核相关滤波器跟踪算法在目标尺度变化和产生遮挡的跟踪中存在的问题,提出了一种结合支持向量机(SVM)检测器的多尺度相关滤波器算法.通过在核矩阵中引入尺度因子来提高相关滤波器处理尺度变换的性能,训练了一个在线SVM检测器,当目标发生遮挡时,能够重新获取目标,同时自适应调整模型学习率.通过与其他5种优秀跟踪算法进行实验比较,结果表明:方法能够广泛应用于目标跟踪领域,对目标进行准确地估计并有效处理目标的遮挡问题.

关 键 词:目标跟踪  支持向量机  多尺度  相关滤波器  target tracking  support vector machine(SVM)  multi-scale  correlation filter

An algorithm of kernelized correlation tracking with SVM
YUAN Kang,WEI Da-peng,ZHAO Cong-mei,FU Shun. An algorithm of kernelized correlation tracking with SVM[J]. Transducer and Microsystem Technology, 2018, 0(5): 138-143. DOI: 10.13873/J.1000-9787(2018)05-0138-06
Authors:YUAN Kang  WEI Da-peng  ZHAO Cong-mei  FU Shun
Abstract:Although correlation filter-based tracking method achieve competitive results both on accuracy and robustness,there is still a need to improve the overall tracking capability. Aiming at problem of kernelized correlation filter-based tracking algorithm in scale target variation and occlusion,present a multi-scale correlation tracker algorithm combined with support vector machine(SVM)detector to solve the above problems. By introducing the scale factor into the kernel matrix to improve the performance of correlation filter processing scale transform.Train an online SVM detector to retrieve the target when the target occluded,and adaptively adjust the learning rate of the model.By comparing with the other five outstanding tracking algorithms.Experimental results show that the proposed approach can estimate the object state accurately and handle the object occlusion problem effectively.
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号