首页 | 本学科首页   官方微博 | 高级检索  
     


Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation
Authors:Peng Lan  Diem Ai Nguyen  Soo-Yeon Lee  Jung-Wook Cho
Affiliation:1.Department of Materials Science and Engineering,Pohang University of Science and Technology,Pohang,Republic of Korea;2.Graduate Institute of Ferrous Technology,Pohang University of Science and Technology,Pohang,Republic of Korea
Abstract:The heat transfer and solidification microstructure evolution during continuous casting were experimentally studied in this work. A new approach to physically simulate the steel solidification behavior during continuous casting was developed. Six steel grades with different solidification mode were introduced to elucidate the carbon equivalent dependent mold heat flux, prior austenite grain size and secondary dendrite arm spacing. It is found that the non-steady mold heat fluxes in the experiment against time for all steel grades are comparative to that versus distance in practical continuous casting. Due to the occurrence of L→L+δ→δ+γ→γ transformation with the largest amount of volume contraction in hypo-peritectic steel, it shows the lowest mold heat flux among these six steel grades. It is also demonstrated from the solidification microstructure results that the prior austenite grain size and secondary dendrite arm spacing in the physical simulation are in good agreement with those in continuously cast strand. In addition, the steel with a higher temperature for the onset of δ→γ transformation reveals the larger prior austenite grains resulted from the higher grains growth rate in the post solidification process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号