首页 | 本学科首页   官方微博 | 高级检索  
     

石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能
引用本文:杜春艳,宋佳豪,谭诗杨,阳露,张卓,余关龙. 石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38(7): 2254-2264. DOI: 10.13801/j.cnki.fhclxb.20200909.001
作者姓名:杜春艳  宋佳豪  谭诗杨  阳露  张卓  余关龙
作者单位:1.长沙理工大学 水利工程学院,长沙 410114
基金项目:湖南省教育厅科学研究项目(18B127;19A032;16C0060);国家自然科学基金(51109016)
摘    要:采用沉淀沉积法制备了石墨烯桥联的ZnO/Ag3PO4复合光催化材料,具有优异的可见光催化性能,通过XRD、XPS、SEM、EDS、BET、FTIR、UV-Vis DRS、PL及ESR等表征手段对其晶体结构、形貌、光学性质等进行了表征及分析,并研究了不同氧化石墨烯比例的GO-ZnO/Ag3PO4复合材料对模拟抗生素废水环丙沙星(CIP)的光催化降解性能。由于GO及ZnO的引入,不仅增强了GO-ZnO/Ag3PO4对可见光吸收,且拥有了更高的电子-空穴对的分离效率。当GO与Ag3PO4的质量比为1%时,GO-ZnO/Ag3PO4显示出最佳的光催化活性,60 min可见光照后对CIP降解率可达85.3%。捕获实验表明,超氧自由基(·O2?)是反应过程中的主要活性物质,ZnO与Ag3PO4之间形成了异质结,符合Z型电子转移机制,GO的引入进一步提高了电子的快速转移,并使Z型体系更加稳定。经过6次光催化循环,降解率依然保持在70%以上,表明GO-ZnO/Ag3PO4复合材料具有优异的稳定性。 

关 键 词:石墨烯   GO-ZnO/Ag3PO4   光催化   异质结   环丙沙星   复合材料
收稿时间:2020-07-16

Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin
Affiliation:1.School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China2.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
Abstract:Graphene-bridged ZnO/Ag3PO4 composite photocatalytic material, with excellent visible light catalytic performance, was prepared with the method of precipitation and deposition. Some characterization methods, includingXRD, XPS, SEM, EDS, BET, FTIR, UV-Vis DRS, PLand ESR were adopted to characterize and analyze the crystal structure, morphology, and optical properties of ZnO/Ag3PO4 composite photocatalytic material. Meanwhile, the photocatalytic degradation performance of GO-ZnO/Ag3PO4 with different ratios of graphene oxideto simulation antibiotics wastewater ciprofloxacin (CIP) was explored. The introduction of GO and ZnO enhances the visible light absorption of GO-ZnO/Ag3PO4, and makes GO-ZnO/Ag3PO4 have better separation efficiency of electron-hole pairs. When the mass fraction of GO is 1wt%, GO-ZnO/Ag3PO4 displays the best photocatalytic activity, and the degradation rate of CIP can reach 85.3% after 60 minutes of visible light. The capture experimentprove that, in the reaction process, superoxide radical (·O2–) is the main active substance, and a heterojunction is formed between ZnO and Ag3PO4, which conforms to the Z-scheme electron transfer mechanism. The introduction of GO furtherly improves the rapid transfer of electrons and makes the Z-scheme system more stable. After six photocatalytic cycles, the degradation rate remained above 70%, indicating that the GO-ZnO/Ag3PO4 composite material has excellent stability. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《复合材料学报》浏览原始摘要信息
点击此处可从《复合材料学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号