首页 | 本学科首页   官方微博 | 高级检索  
     


Alumina grit blasting parameters for surface preparation in the plasma spraying operation
Authors:M Mellali  A Grimaud  A C Leger  P Fauchais  J Lu
Affiliation:(1) Equipe “Plasma, Laser, Matériaux,” LMCTS, URA CNRS 320, Faculté des Sciences, University of Limoges, 123, Av. Albert Thomas, 87060 Limoges Cedex, France;(2) Laboratoire de Mécanique, University of Troyes, 13, Blv. Henri Barbune, 12000 Troyes, France
Abstract:This paper examines how the grit blasting process influences the surface roughness of different sub-strates, the grit residue, and the grit erosion. The influence of grit blasting conditions on induced sub-strate residual stresses is also discussed. Aluminum alloy, cast iron, and hard steel were blasted with white alumina grits of 0.5,1, and 1.4 mm mean diameters. Grit blasting was performed using either a suction-type or a pressure-type machine equipped with straight nozzles made of B4C. The influence of the follow-ing parameters was studied: grit blasting distance (56 to 200 mm), blasting time (3 to 30 s), angle between nozzle and blasted surface (30°, 60°, 90°), and blasting pressure (0.2 to 0.7 MPa). The roughness of the substrate was characterized either by using a perthometer or by image analysis. The grit residue remain-ing at the blasted surface was evaluated after cleaning by image analysis. The residual stresses induced by grit blasting were determined by using the incremental hole drilling method and by measuring the de-flection of grit-blasted beams. Grit size was determined to be the most important influence on roughness. The average values of Ra and Rt and the percentage of grit residue increased with grit size as well as the depth of the plastic zone under the substrate. An increase of the pressure slightly increased the values of Äa and Rt but also promoted grit breakdown and grit residue. A blasting time of 3 to 6 s was sufficient to obtain the highest roughness and limit the grit breakdown. The residual stresses generated under the blasted surface were compressive, and the depth of the affected zone depended on the grit diameter, the blasting pressure, and the Young’s modulus of the substrate. More-over, the maximum residual stress was reached at the limit of the plastic zone (i.e., several tenths of a mil-limeter below the substrate surface).
Keywords:grit blasting procedure roughness  residual stresses  surface preparation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号