首页 | 本学科首页   官方微博 | 高级检索  
     


On the Quaternary System Ti-Fe-Ni-Al
Authors:Xinlin Yan  A. Grytsiv  P. Rogl  V. Pomjakushin  H. Schmidt
Affiliation:1. Institute of Physical Chemistry, University of Vienna, W?hringerstrasse 42, A-1090, Wien, Austria
2. Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
Abstract:The homogeneity ranges of the Laves phases and phase relations concerning the Laves phases in the quaternary system Ti-Fe-Ni-Al at 900 °C were defined by x-ray powder diffraction (XPD) data and electron probe microanalysis (EPMA). Although at higher temperatures the Laves phase forms a continuous solid solution, two separate homogeneity fields of TiFe2-based (denoted by λFe) and Ti(TiNiAl)2-based (denoted by λNi) Laves phases appear at 900 °C. The relative locations of Laves phases, G phase, Heusler phase, and CsCl-type phase as well as the associated tie-tetrahedra were experimentally established in the quaternary for 900 °C and presented in three-dimensional (3D) view. Furthermore, a partial isothermal section TiFe2-TiAl2-TiNi2 was constructed, and a connectivity scheme, derived for equilibria involving Laves phases in the Ti-Fe-Ni-Al quaternary system at 900 °C was derived. As a characteristic feature of the quaternary phase diagram, the solid solubility of fourth elements in both the TiFe2-based and Ti(NiAl)2-based Laves phases is limited at 900 °C and is dependent on the ternary Laves phase composition. A maximum solubility of about 8 at.% Ni is reached for composition Ti33.3Fe33.3Al33.4. Structural details have been evaluated from powder x-ray and neutron diffraction data for (i) the Ti-Fe-Ni ternary and the Ti-Fe-Ni-Al quaternary Laves phases (MgZn2-type, space group: P63/mmc) and (ii) the quaternary G phase. Atom site occupation behavior for all phases from the quaternary system corresponds to that of the ternary systems. For the quaternary Laves phase, Ti occupies the 4f site and additional Ti (for compositions higher than 33.3 at.%Ti) preferably enters the 6h site. Aluminum and (Fe,Ni) share the 6h and the 2a sites. The compositional dependence of unit cell dimensions, atomic coordinates, and interatomic distances for the Laves phases from the quaternary system is discussed. For the quaternary cubic G phase, a centrosymmetric as well as a noncentrosymmetric variety was observed depending on the composition: from combined x-ray and neutron powder diffraction measurements Ti33.33Fe13.33Ni10.67Al42.67 was found to adopt the lower symmetry with space group $$ Fbar 43m $$.
Keywords:crystal chemistry  diffraction (x-ray/neutron powder)  intermetallics  phase equilibria  site occupancy  ternary and quaternary titanium aluminides  titanium-iron-nickel-aluminum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号