首页 | 本学科首页   官方微博 | 高级检索  
     


Design and modeling of 4-bit slow-wave MEMS phase shifters
Authors:Lakshminarayanan  B Weller  TM
Affiliation:Electr. Eng. Dept., Univ. of South Florida, Tampa, FL, USA;
Abstract:A true-time-delay multibit microelectromechanical systems (MEMS) phase-shifter topology based on impedance-matched slow-wave coplanar-waveguide sections on a 500-/spl mu/m-thick quartz substrate is presented. A semilumped model for the unit cell is derived and its equivalent-circuit parameters are extracted from measurement and electromagnetic simulation data. This unit cell model can be cascaded to accurately predict N-section phase-shifter performance. Experimental data for a 4.6-mm-long 4-bit device shows a maximum phase error of 5.5/spl deg/ and S/sub 11/ less than -21 dB from 1 to 50 GHz with worst case S/sub 21/ less than -1.2 dB. In a second design, the slow-wave phase shifter was additionally loaded with MEMS capacitors to result in a phase shift of 257/spl deg//dB at 50 GHz, while keeping S/sub 11/ below -19 dB (with S/sub 21/<-1.9 dB). The beams are actuated using high-resistance SiCr bias lines with typical actuation voltage around 30-45 V.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号