首页 | 本学科首页   官方微博 | 高级检索  
     


Helium-induced weld cracking in austenitic and martensitic steels
Authors:H T Lin  B A Chin
Affiliation:(1) Materials Engineering, Auburn University, 36849, AL, USA;(2) Present address: Metals and Ceramics Division, Oak Ridge National Laboratory, 37831-6068 Oak Ridge, TN, USA
Abstract:Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1 MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ldquotritium trickrdquo technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ge2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号