首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication
Authors:H Rosen  BR Michel  DR vanDevanter  JP Hughes
Affiliation:Departments of Medicine, University of Washington, Seattle, Washington 98195, USA. hqr@u.washington.edu
Abstract:The microbicidal myeloperoxidase (MPO)-H2O2-chloride system strongly inhibits Escherichia coli DNA synthesis. Also, cell envelopes from MPO-treated E. coli cells lose their ability to interact with hemimethylated DNA sequences of oriC, the chromosomal origin of replication, raising the prospect that suppression of DNA synthesis involves impairment of oriC-related functions (H. Rosen, et al. Proc. Natl. Acad. Sci. USA, 87:10048-10052, 1990). To evaluate whether origin-specific DNA sequences play a role in the MPO effect on E. coli DNA synthesis, plasmid DNA replication was compared to total (chromosomal) DNA replication for six plasmids with three distinct origins of replication. Plasmid pCM700 replication, replicating from oriC, was as sensitive to MPO-mediated inhibition as was total (chromosomal) DNA replication. A regression line describing this relationship had a slope of 0.90, and the r2 was 0.89. In contrast, the replication activities of three of four non-oriC plasmids, pUC19, pACYC184, and pSC101, demonstrated significant early resistance to inhibition by MPO-derived oxidants. The exception to this resistance pattern was plasmid pSP102, which has an origin derived from P1 phage. pSP102 replication declined similarly to that of total DNA synthesis. The regression line for pSP102 replication versus total DNA synthesis had a slope of 0.95, and the r2 was 0.92. The biochemical requirements for P1-mediated replication are strikingly similar to those for oriC-mediated replication. It is proposed that one of these requirements, common to oriC and the P1 origin but not critical to the replication of the other non-oriC plasmids, is an important target for MPO-mediated oxidations that mediate the initial decline in E. coli chromosomal DNA synthesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号