In situ atomic oxygen erosion study of fluoropolymer films using X‐ray photoelectron spectroscopy |
| |
Authors: | Rene I. Gonzalez Shawn H. Phillips Gar B. Hoflund |
| |
Abstract: | The surfaces of a homologous series of fluoropolymers were characterized in situ using X‐ray photoelectron spectroscopy before and after a 15‐min exposure to the flux produced by a unique hyperthermal atomic oxygen (AO) source, which produces a flux of about of 1015 atoms cm?2 s?1. The linear polymers investigated in this study include high‐density polyethylene (HDPE), poly(vinyl fluoride) (PVF), poly(vinylidene fluoride) (PVdF), and poly(tetrafluoroethylene) (PTFE). They possess a similar base structure with increasing fluorine‐to‐carbon ratios of 0, 1 : 2, 1 : 1, and 2 : 1, respectively. No interaction of the AO with the nonfluorine‐containing linear polymer HDPE was detected over this short exposure. However, a correlation exists between the chemical composition of the fluorinated polymers and the induced chemical and structural alterations occurring in the near‐surface region as a result of exposure to AO. The data indicate that AO initially attacks the fluorine portion of the polymers, resulting in a substantial decrease in the near‐surface fluorine concentration. The near‐surface fluorine‐to‐carbon ratios of PVF, PVdF, and PTFE decreased during the 15‐min AO exposure by 68, 39, and 18.5%, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1977–1983, 2004 |
| |
Keywords: | atomic oxygen low earth orbit (LEO) polymer, space, fluorine, fluoropolymers |
|
|