首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gabor和改进LDA的人耳识别
引用本文:胡春安,陈玉玲. 基于Gabor和改进LDA的人耳识别[J]. 计算机工程与科学, 2015, 37(7): 1355-1359
作者姓名:胡春安  陈玉玲
作者单位:江西理工大学信息工程学院,江西赣州,341000
基金项目:江西省教育厅科技项目,江西省教育厅重点项目
摘    要:针对人耳识别中无法避免的小样本问题,提出了基于Gabor特征和改进LDA(ILDA)的识别算法。该算法首先提取人耳局部Gabor特征,然后重新定义Fisher准则和类内分散度矩阵,再将高维空间映射到低维后寻找最优投影方向,最后利用训练样本与测试样本特征投影值的欧氏距离进行分类识别。与传统方法相比,新算法能有效解决人耳识别中的小样本问题,获得较高的识别准确率。

关 键 词:局部Gabor特征  改进LDA算法  欧氏距离  小样本问题  人耳识别
收稿时间:2014-10-13
修稿时间:2015-07-25

An ear recognition algorithm based on Gabor features and improved LDA
HU Chun-an,CHEN Yu-ling. An ear recognition algorithm based on Gabor features and improved LDA[J]. Computer Engineering & Science, 2015, 37(7): 1355-1359
Authors:HU Chun-an  CHEN Yu-ling
Affiliation:(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
Abstract:We propose a novel ear recognition algorithm based on Gabor features and improved LDA to deal with the inevitable problem of small sample size.We firstly extract ear features by the local Gabor filter,and redefine the new Fisher criteria and the intra class scatter matrix.Then we seek the optimal projection direction by mapping from a higher dimensional space to a lower dimensional space,Finally we make a comparison of the Euclidean distance of projecting feature vectors between the training samples and the testing samples,and classify them accordingly. Experimental results show that, compared with the traditional methods, the proposed algorithm can effectively solve the small sample size problem in ear recognition with a higher recognition accuracy.
Keywords:local gabor feature  improved LDA  euclidean distance  small sample size problem  ear recognition
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号