首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络与决策树相结合模型的遥感图像自动分类研究
引用本文:李飞雪,李满春,赵书河. 基于人工神经网络与决策树相结合模型的遥感图像自动分类研究[J]. 遥感信息, 2003, 0(3): 23-25,T004
作者姓名:李飞雪  李满春  赵书河
作者单位:1. 南京大学城市与资源学系,南京210093
2. 北京大学遥感所,北京100871
基金项目:国家教学科研奖励计划“青年教师奖”,浙江省国土资源遥感综合调查项目 (编号 :ZR0 2 )资助
摘    要:本文提出了一种新的基于Kohonen神经网络与决策树相结合模型的遥感图像自动分类方法。选取绍兴地区为实验区,对TM图像进行了分类实验。并将该模型分类结果与基于Kohonen网络模型的分类结果进行了比较,发现对于江南低山丘陵河网密集区的TM图像应用该模型进行分类能够得到较为满意的分类结果,其分类精度可达到85.16%,较之单纯使用Kohonen网络模型提高了20.12%。

关 键 词:遥感 图像分类 决策树 人工神经网络 Kohonen神经网络
文章编号:1000-3177(2003)71-0023-03

Study on Model of ANN Combined with Decision Tree Algorithmfor Image Classification
LI Fei xue,LI Man chun,ZHAO Shu he. Study on Model of ANN Combined with Decision Tree Algorithmfor Image Classification[J]. Remote Sensing Information, 2003, 0(3): 23-25,T004
Authors:LI Fei xue  LI Man chun  ZHAO Shu he
Abstract:This work carried out a new auto classification model of remote sensing image using Kohonen network combined with decision tree algorithm. Shaoxing county of Zhejiang Province was selected as a case study area. Both model of Kohonen network and model of Kohonen network combined with decision tree algorithm were validated by TM image of study area and accuracy assessments were compared . The results suggested that satisfactory results could be achieved by applying the model of Kohonen network combined with decision tree algorithm to TM image classification of hillside area with concentrated network of waterways at the south of Yangtse River. The accuracy of this trial was 85.16%, much higher than the classification result using Kohonen network alone.
Keywords:remote sensing  image classification  Kohonen network  decision tree algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号