首页 | 本学科首页   官方微博 | 高级检索  
     


Protective ability of acetylsalicylic acid (aspirin) to scavenge radiation induced free radicals in J774A.1 macrophage cells
Authors:T Saini  M Bagchi  D Bagchi  S Jaeger  S Hosoyama  SJ Stohs
Affiliation:Dipartimento di Fisiopatologia Clinica, Università di Firenze, Italy.
Abstract:Indirect studies suggested that protein kinase C (PKC) has a role in sperm motility and the acrosome reaction. Physiological inducers of the sperm acrosome reaction include progesterone, which can increase intracellular calcium (Ca2+]i), tyrosine phosphorylation of proteins and chloride efflux in human spermatozoa. PKC may be involved in progesterone-stimulated acrosome reaction, although controversial results have been obtained concerning the effect of PKC inhibition on progesterone-stimulated Ca2+]i increase. In the present study, we investigated the direct effect of progesterone on the activity of PKC, as well as the effect of a panel of PKC inhibitors on progesterone-stimulated Ca2+]i increase and tyrosine phosphorylation of proteins. We found that progesterone stimulates sperm PKC activity and that PKC inhibition with staurosporine and bisindolylmaleimide partially reversed the effect of progesterone on acrosome reaction, indicating an involvement of the enzyme in the effect of the steroid. We next evaluated the effect of three different PKC inhibitors (sangivamycin, staurosporine and bisindolylmaleimide) on progesterone-stimulated Ca2+]i increase. Neither short-term (15 min) nor long-term (90 min) preincubation with any of the three compounds had a substantial effect on the stimulatory effect of progesterone on sperm Ca2+]i. Nor was responsiveness to progesterone affected by either short-term (determining activation of PKC) or long-term (determining down-regulation of PKC) incubation with the tumour promoter phorbol myristate acetate (PMA), a known non-physiological stimulator of PKC. These results indicate that progesterone-stimulated calcium influx is independent of PKC activation. In addition, we found that preincubation with PKC inhibitors had a stimulatory effect per se on tyrosine phosphorylation of sperm proteins. When compared with the appropriate control, the effect of progesterone on tyrosine phosphorylation was slightly (but not significantly) reduced by the inhibitors, sangivamycin, staurosporine and bisindolylmaleimide, but was significantly inhibited by calphostin C. These results do not permit a final conclusion on the involvement of PKC in progesterone-stimulated tyrosine phosphorylation of sperm proteins. However, the lack of effect of PMA on tyrosine phosphorylation indicates that PKC stimulation is not sufficient to induce this effect. In conclusion, our results indicate that PKC plays a role in progesterone-induced acrosome reaction and that progesterone-stimulated PKC activation is downstream to stimulation of calcium influx by the steroid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号