首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic generation of controllers for embodied legged organisms: a Pareto evolutionary multi-objective approach
Authors:Teo Jason  Abbass Hussein A
Affiliation:Artificial Intelligence Research Group, School of Engineering and Information Technology, Universiti Malaysia Sabah, Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia. jtwteo@ums.edu.my
Abstract:In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号