首页 | 本学科首页   官方微博 | 高级检索  
     


Flame flow tagging velocimetry with 193-nm H2O photodissociation
Authors:Wehrmeyer J A  Ribarov L A  Oguss D A  Pitz R W
Affiliation:Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA. wehrme@vuse.vanderbilt.edu
Abstract:In a new nonintrusive, instantaneous flow tagging method called hydroxyl tagging velocimetry (HTV), a molecular grid of hydroxyl (OH) radicals is written into a flame and the displaced grid is imaged at a later time to give the flame's velocity profile. Single-photon photodissociation of vibrationally excited H(2)O, when a 193-nm ArF excimer laser is used, produces a tag line of superequilibrium OH and H photoproducts in a high-temperature flow field that itself may contain ambient OH. The tag line OH concentration is composed mostly of direct OH photoproducts, but OH is also indirectly produced through H photoproduct reactions with oxygen-bearing species. For lean and modestly rich flames the OH tag lifetime is of the order of 1 ms. For very rich H(2)-air flames (equivalence ratio of 4.4) the lifetime drops to 200 ns. After displacement the position of the OH tag line is revealed through fluorescence caused by OH (A-X) (3 <-- 0) excitation by using a 248-nm tunable KrF excimer laser. A HTV grid of multiple tag lines, providing multipoint velocity information, is experimentally demonstrated in a turbulent H(2)/N(2)-air diffusion flame.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号