首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive non-singular fast terminal sliding mode based on prescribed performance for robot manipulators
Authors:Yue Zhang  Lijin Fang  Tangzhong Song  Ming Zhang
Affiliation:1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, People's Republic of China;2. Faculty of Robot Science and Engineering, Northeastern University, Shenyang, People's Republic of China;3. School of Mechanical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China

Contribution: Writing - review & editing

Abstract:A fast convergent non-singular terminal sliding mode adaptive control law based on prescribed performance is formulated to solve the uncertainties and external disturbances of robot manipulators. First, the tracking error of robot manipulators is transformed by using the prescribed performance function, which improves the transient behaviors and steady-state accuracy of robot manipulators. Then, a novel fast convergent non-singular terminal sliding mode surface is brought up according to the transformed error, and the control law is derived to meet the stability requirements of robot manipulators. In practice, the upper boundary of the lumped disturbances cannot be accurately obtained. Therefore, an adaptive prescribed performance control (PPC) controller to lumped disturbances is brought up to ensure the stability and finite-time convergence of robot manipulators. Finally, the system stability of robot manipulators is proved by the Lyapunov theorem. Simulation results and comparative analysis demonstrate the superiority and robustness of the raised strategy.
Keywords:finite-time  non-singular terminal sliding mode  prescribed performance control  robot manipulators
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号