首页 | 本学科首页   官方微博 | 高级检索  
     


In Situ Reconstruction of Helical Iron Borophosphate Precatalyst toward Durable Industrial Alkaline Water Electrolysis and Selective Oxidation of Alcohols
Authors:Hongyuan Yang  Gonela Vijaykumar  Ziliang Chen  J Niklas Hausmann  Indranil Mondal  Suptish Ghosh  Victor C J Nicolaus  Konstantin Laun  Ingo Zebger  Matthias Driess  Prashanth W Menezes
Affiliation:1. Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623 Berlin, Germany;2. Materials Chemistry Group for Thin Film Catalysis–CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany;3. Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technical University of Berlin, Straße des 17 Juni 135, Sekr. PC14, 10623 Berlin, Germany
Abstract:Iron-based (pre)catalysts have attracted enormous attention for various electrooxidation reactions due to the low cost, high abundance, and multiple accessible redox states of iron. Herein, a well-defined helical iron borophosphate (LiFeBPO) is developed as an electro(pre)catalyst for the oxygen evolution reaction (OER) and selective alcohol oxidation. When deposited on nickel foam (NF), LiFeBPO exhibits an exceptional OER performance at ambient conditions attaining a current density of 100 mA cm?2 at ≈276 mV overpotential in 1 m KOH. Notably, this anode sustains durable alkaline water electrolysis at 500 mA cm?2 for over 330 h under industrial conditions (6 m KOH and 85 °C). In –situ and ex situ investigations reveal a deep reconstruction of LiFeBPO during OER, which transforms into a 3D open porous skeleton assembled by ultrasmall, low-crystalline α-FeOOH nanoparticles (interfacing with NiOOH of NF). This structure contributes to exposing accessible surface active sites, as well as accelerating mass transport and bubble detachment. Moreover, this electrode also catalyzes the electrooxidation of alcohols (methanol, ethylene glycol, and glycerol) to formic acid (FA) with high selectivity and full conversion. This study provides promising solutions for designing suitable anodes for the simultaneous production of green hydrogen fuel and value–added FA from electrooxidation reactions.
Keywords:alcohol oxidation  alkaline water electrolysis  borophosphate  formic acid production  industrial conditions  surface reconstruction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号