首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis and compensation for the cascade dead-zones in the proportional control valve
Affiliation:The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
Abstract:The four-way proportional directional control valve has been widely used as the main stage spring constant for the two-stage proportional control valve (PDV). Since a tradeoff should be made between manufacturing costs and static performance, two symmetry dead-zones are introduced in the main stage spring constant: the center dead-zone caused by the center floating position and the intermediate dead-zone caused by the intermediate position. Though the intermediate dead-zone is much smaller than the center dead-zone, it has significant effect on the dynamic position tracking performance. In this paper, the cascade dead-zones problem in a typical two-stage PDV is analyzed and a cascade dead-zones model is proposed for the main stage spring constant. Then, a cascade dead-zones inverse method is improved with gain estimation and dead-zone detection to compensate the dead-zone nonlinearity. Finally, a digital controller is designed for verification. The comparative experimental results indicate that it is effective to reduce the large position tracking error when the proposed method is applied.
Keywords:Cascade dead-zones  Intermediate position  Two-stage proportional control valve  Position tracking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号