首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of co‐hard segments on the microstructure and properties thermoplastic poly(ether ester) elastomers
Authors:Guo‐Hua Hu  Tao Jiang  Qunchao Zhang
Affiliation:1. Laboratory of Reactions and Process Engineering, CNRS–University of Lorraine, Nancy Cedex, France;2. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, China
Abstract:A thermoplastic poly(ether ester) elastomer (TPEE) is composed of polyester hard segments and polyether soft segments. Polyester and polyether segments are often homopolymer segments. This work aims at incorporating poly(butylene phthalate (PBP) as co‐hard segments in the hard segments of poly(butylene terephthalate) (PBT)‐b‐poly(tetramethylene oxide) (PTMO) thermoplastic elastomer, and investigating structures and properties of the resulting materials, denoted as (PBT‐co‐PBP)‐b‐PTMO. (PBT‐co‐PBP)‐b‐PTMO was synthesized from dimethyl terephthalate (DMT), dimethyl phthalate (DMP), PTMO (Mn = 1000 g/mol), and 1,4‐butanediol (BDO). The crystallinity of (PBT‐co‐PBP)‐b‐PTMO first decreased and then increased with increasing PBP content from 5% to 10% due to a decrease in the average sequence length of the PBT hard segments. Its elongation at break was increased by 200–350%. When the mass fractions of PBT and PBP were 42% and 8%, respectively, the (PBT‐co‐PBP)‐b‐PTMO showed the best performance in terms of permanent deformation, strength, and hardness whose values were 30%, 25 MPa, and 37 D, respectively. All the synthesized copolymers had good thermal stability with a decomposition temperature of 400°C or so. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43337.
Keywords:differential scanning calorimetry (DSC)  elastomers  properties and characterization  thermal properties  thermoplastics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号