首页 | 本学科首页   官方微博 | 高级检索  
     

基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方法
引用本文:陈 霄,马云龙,李新家,方 磊,严永辉,喻 伟. 基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方法[J]. 电力需求侧管理, 2024, 26(3): 112-118
作者姓名:陈 霄  马云龙  李新家  方 磊  严永辉  喻 伟
作者单位:国网江苏省电力有限公司,南京 210000;江苏方天电力技术有限公司,南京 210024
基金项目:国网江苏省电力有限公司科技项目(J2021084)
摘    要:非侵入式负荷辨识技术能够低成本的获取用户各类设备使用情况,实现电力负荷的在线监测与分析,对支撑负荷预测、需求响应等应用开展有着重要意义。针对一般工商业用户类型多样、负荷种类繁多、设备运行特性复杂的特点,提出了一种基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方案。首先针对不同能耗级别、不同启停特性的设备设计了参数可调的统一负荷事件检测框架,提升了缓变型、分段型、震荡型负荷事件的检出准确度。随后提出了基于多元特征与LDA线性判别的设备类型判断算法,在兼顾边缘端计算效率的同时取得了与随机森林等非线性分类器相同的辨识性能。

关 键 词:非侵入式负荷辨识;一般工商业用户;事件检测;改进三阈值算法;LDA线性判别
收稿时间:2023-12-03
修稿时间:2024-02-21

Industrial and commercial load identification method based on normalized three threshold event detection and LDA classifier
CHEN Xiao,MA Yunlong,LI Xinji,FANG Lei,YAN Yonghui,YU Wei. Industrial and commercial load identification method based on normalized three threshold event detection and LDA classifier[J]. Power Demand Side Management, 2024, 26(3): 112-118
Authors:CHEN Xiao  MA Yunlong  LI Xinji  FANG Lei  YAN Yonghui  YU Wei
Affiliation:State Grid Jiangsu Electric Power Co.,Ltd.,Nanjin 210024,China;Jiangsu Fangtian Electric Power Technology Co.,Ltd.,Nanjin 210000,China
Abstract:Non-intrusive load identification technology can obtain the usage of various equipment at low cost,and can monitor and analyze power load on line,which is of great significance for load forecasting,demand response and other applications. In view of the diversity of general industrial and commercial users,the variety of loads and the complexity of equipment operation characteristics,anindustrial and commercial load identification scheme based on normalized three threshold event detection and LDA classifier is proposed,Firstly,a unified load event detection framework with adjustable parameters is designed for devices with different energy levels and different start-stop characteristics,which improves the detection accuracy of slow-moving,segmented and oscillating load events. Then an equipment type identification algorithm based on multivariate features and LDA linear discrimination is proposed,which achieves the same identification performance as nonlinear classifiers such as random forest while ensuring the computational efficiency of the edge.
Keywords:non-intrusive load identification;general industrial and commercial users;event detection;improved three threshold algorithm;LDA linear discriminant
点击此处可从《电力需求侧管理》浏览原始摘要信息
点击此处可从《电力需求侧管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号