首页 | 本学科首页   官方微博 | 高级检索  
     


FORMULATION AND EXPERIMENTAL VERIFICATION OF A PNEUMATIC FINITE ELEMENT
Authors:D. T. BERRY  H. T. Y. YANG
Abstract:Many engineering structures completely surround and enclose gas filled volumes. The enclosed gas adds additional stiffness to the surrounding structure. This paper shows how to account for this effect by means of an augmented virtual work principle. The additional term augmenting the virtual work equilibrium statement for the structure is the virtual boundary work done by the pressure of the enclosed gas. The augmented equations are discretized using standard finite element methods, and the additional terms are discussed. The resulting ‘pneumatic’ finite element is shown to be analogous to regular structural finite elements. To assess the accuracy and efficiency and also to illustrate the applicability of the present formulation, a series of four examples was selected. In two of the examples, the behaviour of the end cap of a partially filled plastic food product container is studied. The numerical results using the pneumatic element compare well with an alternative Rayleigh–Ritz solution of the end cap behaviour. The other two examples represent the behaviour of a double bellows air spring shock absorber under static isothermal and dynamic adiabatic conditions. For the static isothermal case, an experimental study was performed with results in good agreement with the pneumatic element solutions. For the dynamic adiabatic loading case, the dynamic stiffness of the air spring was predicted using the pneumatic element. The numerical results agree with experimental data published in an air spring application guide. The examples illustrate that the pneumatic element formulation can be applied to the large deflection analysis of structures that enclose gas filled volumes.
Keywords:finite elements  pneumatics  air springs  containers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号