首页 | 本学科首页   官方微博 | 高级检索  
     

核偏最小二乘算法的图像超分辨率算法
引用本文:吴炜,杨晓敏,余艳梅,石一兴,何小海. 核偏最小二乘算法的图像超分辨率算法[J]. 电子科技大学学报(自然科学版), 2011, 40(1): 105-110. DOI: 10.3969/j.issn.1001-0548.2011.01.020
作者姓名:吴炜  杨晓敏  余艳梅  石一兴  何小海
作者单位:1.四川大学电子信息学院 成都 610064
基金项目:教育部重点项目,国家自然科学基金
摘    要:提出了基于核偏最小二乘算法(KPLS)回归的超分辨率复原算法.该算法首先将高低分辨率图像块的高频信息和中频信息作为建立回归关系的特征,并对图像进行分块;依据相应的高低分辨率图像块的关系,使用KPLS建立起回归模型;在复原时,依据该模型回归得到高分辨率的图像块,将图像块拼接为高分辨率的图像.通过对人脸图像和车牌图像的实验...

关 键 词:图像复原  核偏最小二乘法(KPLS)  基于学习的超分辨率  回归算法
收稿时间:2009-08-08

Image Super-Resolution Using KPLS
WU Wei,YANG Xiao-min,YU Yan-mei,SHI Yi-xing,HE Xiao-hai. Image Super-Resolution Using KPLS[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 105-110. DOI: 10.3969/j.issn.1001-0548.2011.01.020
Authors:WU Wei  YANG Xiao-min  YU Yan-mei  SHI Yi-xing  HE Xiao-hai
Affiliation:1.College of Electronics and Information Engineering,Sichuan University Chengdu 610064
Abstract:A learning-based super-resolution algorithm based on Kernel Partial Least Squares (KPLS) regression is proposed. First, KPLS regression algorithm is introduced. Then a super-resolution algorithm based on KPLS regression is analyzed. High resolution images use the high-frequency information as their feature, while low resolution images use middle-frequency as their features. Based on the relationship of the high and low resolution images, KPLS is used to set up regression model. The regression model is applied to infer high-resolution image. The experimental results show that our method can achieve very good results to face images and car plate images. The results of our method are closer to the real images.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号