首页 | 本学科首页   官方微博 | 高级检索  
     


Graphene-nanoplatelet-based photomechanical actuators
Authors:Loomis James  King Ben  Burkhead Tom  Xu Peng  Bessler Nathan  Terentjev Eugene  Panchapakesan Balaji
Affiliation:Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292, USA.
Abstract:This paper reports large light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites. Homogeneous mixtures of GNP/polydimethylsiloxane (PDMS) composites (0.1-5 wt%) were prepared and their infrared (IR) mechanical responses studied with increasing pre-strains. Using IR illumination, a photomechanically induced change in stress of four orders of magnitude as compared to pristine PDMS polymer was measured. The actuation responses of the graphene polymer composites depended on the applied pre-strains. At low levels of pre-strain (3-9%) the actuators showed reversible expansion while at high levels (15-40%) the actuators exhibited reversible contraction. The GNP/PDMS composites exhibited higher actuation stresses compared to other forms of nanostructured carbon/PDMS composites, including carbon nanotubes (CNTs), for the same fabrication method. An extraordinary optical-to-mechanical energy conversion factor (η(M)) of 7-9 MPa W(-1) for GNP-based polymer composite actuators is reported.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号