首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of metal doping into Ce0.5Zr0.5O2 on photocatalytic activity of TiO2/Ce0.45Zr0.45M0.1OX (M=Y, La, Mn)
Authors:Bo Zhong Jun  Lintao  Maochu Gong  Li Wang Jian  Min Liu Zhi  Ming Zhao  Chen Yaoqiang
Affiliation:College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China. zhongjunbo@Sohu.Com
Abstract:The paper demonstrates that the photocatalytic activity of TiO2 towards the decomposition of gaseous benzene in a batch reactor can be greatly improved by loading TiO2 on the surface of CeO(2)-ZrO(2). The research investigates the effects of three metals doping into Ce(0.5)Zr(0.5)O(2) on photocatalytic activity of TiO2/Ce(0.45)Zr(0.45)M(0.1)O(X) (M=Y, La, Mn). The prepared photocatalysts were characterized by BET, XRD, UV-vis diffuse reflectance and XPS analyses. BET surface area of TiO2/Ce(0.45)Zr(0.45)M(0.1)O(X) (M=Y, La, Mn) is smaller than that of Ce(0.5)Zr(0.5)O(2). XRD results reveal that the deposited titania is highly dispersed as in the CeO(2)-ZrO(2) matrix, doping M in the CeO(2)-ZrO(2) lattice causes the changing of lattice space and the diffraction peaks shift to higher 2theta position. Among these four catalysts, the band gap value of TiO(2)/Ce(0.45)Zr(0.45)La(0.1)O(X) is the lowest. The binding energy value of Ti 2p(3/2) of four catalysts transfers to a lower value. The order of photocatalytic activity is TiO2/Ce(0.45)Zr(0.45)La(0.1)O(X)>TiO2/Ce(0.45)Zr(0.45)Y(0.1)O(X)>TiO2/Ce(0.45)Zr(0.45)Mn(0.1)O(X)>TiO2/Ce(0.5)Zr(0.5)O(2)>TiO2. The proposed mechanism is of electron transfer and the stronger absorption in the region 210-400 nm.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号