首页 | 本学科首页   官方微博 | 高级检索  
     


Lack of Neuroprotection with a Single Intravenous Infusion of Human Amnion Epithelial Cells after Severe Hypoxia–Ischemia in Near-Term Fetal Sheep
Authors:Joanne O. Davidson  Lotte G. van den Heuij  Simerdeep K. Dhillon  Suzanne L. Miller  Rebecca Lim  Graham Jenkin  Alistair J. Gunn  Laura Bennet
Affiliation:1.Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.);2.The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.);3.Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
Abstract:Background: Hypoxic–ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic–ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term. The aim of the current study was to determine whether infusion of hAECs early after injury may reduce brain damage after ischemia in near-term fetal sheep. Methods: Chronically instrumented fetal sheep (0.85 gestation) received 30 min of global cerebral ischemia followed by intravenous infusion of hAECs from 2 h after the end of ischemia (ischemia-hAEC, n = 6) or saline (ischemia-vehicle, n = 7). Sham control animals received sham ischemia with vehicle infusion (sham control, n = 8). Results: Ischemia was associated with significant suppression of EEG power and spectral edge frequency until the end of the experiment and a secondary rise in cortical impedance from 24 to 72 h, which were not attenuated by hAEC administration. Ischemia was associated with loss of neurons in the cortex, thalamus, striatum and hippocampus, loss of white matter oligodendrocytes and increased microglial numbers in the white matter, which were not affected by hAEC infusion. Conclusions: A single intravenous administration of hAECs did not reduce electrographic or histological brain damage after 30 min of global cerebral ischemia in near-term fetal sheep.
Keywords:human amnion epithelial cells   hypoxia ischemia   neuroprotection   fetal sheep   inflammation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号