首页 | 本学科首页   官方微博 | 高级检索  
     


Vapor Pressure, Enthalpy, Evaporation Coefficient, and Enthalpy of Activation of the Beryllium Nitride (Be3N2) Decomposition Reaction
Authors:CLARENCE L HOENIG  ALAN W SEARCY
Affiliation:Lawrence Radiation Laboratory, University of California, Livermore, California 94551
Abstract:Beryllium nitride (Be3N2) vaporizes congruently in the range 1640° to 1960°K by the reaction Be, N2( c ) = 3Be( g ) + N2( g ). The equilibrium nitrogen partial pressure, in atmospheres, at the composition for congruent sublimation is given by the expression log P N2= (–1.952 ± 0.038) × 104] T −1+ (6.509 ± 0.207). The measured enthalpy of decomposition (370 ± 5 kcal at 298° K) yields an enthalpy of formation for Be3N2( c ) of –136 ± 6 kcal/mole. The upper limit to the evaporation coefficient at 1600° to 2000°K can be set as 10–4 by comparison of equilibrium data to Langmuir data obtained with a sample of 18% porosity. The apparent enthalpy of activation for the reaction is 409 ± 7 kcal/mole at 1800°K for the porous Langmuir specimen. An expression is developed to predict the temperature dependence of the reduced apparent pressures in Knudsen studies of substances with low evaporation coefficients in terms of the enthalpy of activation. The variation in temperature dependence of the Langmuir measurements and Knudsen measurements with three different-sized orifices is consistent with predictions from this expression.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号